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ABSTRACT 

A summary and commentary of the available theoretical and analytical tools 

and recent advances in the nonlinear dynamics, stability and aperture issues in 

storage rings are presented. 

1. INTRODUCTION 

In this report we summarize the efforts and discussions of the Working Group on Theoretical 

and Analytical Studies at the second ICFA Advanced Beam Dynamics Workshop on "Aperture 

Limitations in Storage Rings," held in Lugano, Switzerland, April 11-16, 1988. The working 

group identified several major issues to be addressed during the workshop. These are: 

1. Comparison and contrast of different analytical methods used to date for determining 

Dynamic Aperture in Storage Rings. 

2. A model lattice cell to compare these different methods. 

3. Other approaches to accurate analytic computation of dynamical distortions to very high 

orders of nonlinearity. 

4. Remainder estimation, long-term weak diffusion rates and all that (Nekhoroshev's theorem). 

5. A strategy for a thorough beam stability and aperture analysis from design considerations. 

In addition, questions regarding the dependence of the suitable methods on the goals of 

achieving a certain stability criterion, simple criteria and "scaling laws" for "stable aperture," the 

definition of "linear aperture" and "SMEAR," and ?pproach to the "border of stability" from above 
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(diffusion rates in the chaotic region by Melnikov's method) were raised and vigorously discussed 

and debated during the workshop. Various members of the group gave expository talks on many 

of these issues throughout the workshop. We discuss issues I through 4 below, followed by a 

summary of the major conclusions. Issue 5 is discussed in detail in a companion paper in these • 

proceedings [I]. Nonlinear dynamics with damping and noise is a specialized topic and although 

discussed during the workshop, is not addressed in this summary. The presence of strong 

radiation damping in an electron storage ring allows questions regarding long-ternl stability beyond 

the damping time to be answered comfortably anyway. 

II. ANALYTICAL METHODS FOR DETERMINING DYNAMIC APERTURE - A BRIEF 

COMMEJ\TTARY 

We are concerned with different analytical methods dealing with amplitude limitations of 

stable motion in storage rings. All the methods studied in detail so far approach the limit of 

stability from 'below' i.e. from the side where the motion is still stable because the initial amplitude 

is not yet too large. A summary describing these methods is provided by G. Guignard [2] in these 

workshop proceedings. In a companion paper in these same proceedings, G. Guignard [3] also 

provides some comments on the advantages and limitations of these various methods. The reader 

should refer to these papers for a complete exposition. 

Most of these methods are based on perturbation techniques of some kind. There are 
, 

methods using perturbation theory in the Hamiltonian formalism e.g. Poincare-von Zeipel-Moser 

procedure, Deprit's algorithm using Lie Transforms, etc. There are perturbation treatments by 

iterations on the equations of motion directly and successive linearizations thereof. There is the , 
secular perturbation theory based on Lindstedt-Poincare technique, using power series expansion 

of the solution in the nonlinear perturbation strength parameter and removing secular tenus in each 

order of perturbation by selecting frequencies appropriately; and others. All these methods strive 

to compute perturbatively, to as high an order as feasible, nonlinear distortions of the phase-space 

at an amplitude of motion as large as possible e.g. distortion L'.I of the invariant action (or 

eq ui valently emittance), nonlinear detuning (i.e. amplitude-dependent tune shift), resonance 

widths, etc. The border of stability is then conjectured, in a somewhat ad hoc manner, to be 

associated with that value of the action 1o or amplitude xo, for which one or more of the following 

conditions are satisfied: (i) the relative nonlinear distortion of action at amplitude xo, computed to 

certain order, becomes greater than or equal to unity, L'.I(xo)/1a ~ 1; (ii) the nonlinear action 

becomes negative, 1o = 10 + M (xo) ~ 0; (iii) the nonlinear action becomes infinitely large; (iv) the 

perturbation solution fails to converge for amplitudes x ~ xo, etc. We should note that the 
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agreement of anyone of these conjectures with the onset of large-scale global chaos supposedly 

associated with the dynamic aperture cannot be proven rigorously. These methods thus do not 

provide estimates of the true dynamic aperture in the strictest sense. Indeed for an arbitrary and 

general nonlinear lattice the limit arrived at this way could be very far from the the true border of 

stability. These limits however have practical value in the sense that they do indicate the amplitude 

at which the phase-space topology gets highly complicated and, conservatively speaking, thus 

provide a necessary, although not sufficient condition for unstable motion. Under certain 

fortuitous circumstances, these limits may even be arbitrarily close to the dynamic aperture, as 

numerical tracking has suggested in a few simple cases [2,4]. 

In most of these methods, the analytical developments become cumbersome after a few low 

order calculations in the perturbation series, linearizations, iterations, etc. The convergence of the 

perturbation procedure, even when good, can not be proved mathematically. In many cases the 

generalization to magnetic multipole elements other than sextupoles has not been achieved and in 

some cases the extensions to two-dimensions even remains to be done. Often the validity of these 

methods is also restricted to a limited range of the linear-optics parameter space e.g. tunes etc. The 

Hagel-Moshammer approach [4] using techniques of secular perturbation theory-has been the most 

successful one, leading to reasonable approximate estimation of the dynamic aperture for systems 

as complex as the LEP collider. 

Amongst nonperturbative methods, one can consider applying the numerically derived 

Residue Criterion of Green and McKay. However, the validity of this criterion has not been 

demonstrated beyond one-dimensional 'standard' and 'quadratic' maps. It can be applied exactly 

and directly to the stability of longitudinal synchrotron motion. For one-dimensional transverse 

betatron motion, it at best confmns Chirikov's resonance overlap criterion for the onset of chaos. 

Application of this method for extracting analytic expressions for the stability limit in a realistic, 

general, nonlinear two-dimensional map representing a storage ring is not obvious. 

Another nonperturbative method; proposed by Gabella, Ruth and Warnock [5], is based on 

the direct solution of the two-dimensional Hamilton-Jacobi equation. This method allows 

computation of distorted invariant tori at amplitudes close to the dynamic aperture and looks for the 

singularities of the implicit equations defining the orbits via the generating function. There are 

indications that the breakdown of the generating function via a singularity is related to the residue 

criterion and can be generalized to higher dimensions. This seems to be one of the most promising 

analytic Hamiltonian approaches so far. 
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One can also attempt to approach the border of stability from 'above' i.e. , from the region of 

large-scale global chaos in phase space. One may look at various stochastic diffusion processes 

e.g., Arnold diffusion, etc. using existing mathematical techniques such as Melnikov's method, 

etc. Not much progress has been made along these directions in storage ring dynamics. 

Comments on these approaches are provided by H. Mais [6] in his contributions to these 

proceedings. 

III. A MODEL LATIICE FOR COMPARING DIFFERENT ANALYTICAL METHODS TO 

CALCULATE THE DYNAMIC APERTURE 

For convenience and standardization, it was felt that one should focus on a model standard 

lattice cell on which to compare, contrast and numerically test the different analytical methods for 

calculating the Dynamic Aperture. The Lattice should be modestly nonlinear and yet be simple 

enough in structure with relatively known dynamic properties in order for it to be useful. 

A FODO-lattice with superimposed quadrupoles and sextupoles separated by drift spaces of 

equal lengths was chosen as such a model. The lattice configuration is shown in Fig. 1. 

OF +SF OD +SD OF +SF 

-2£ - - 2£- -2 £ -
S 

f---- U2 U2 --l 
Fig. 1 

The integrated strengths of each quadrupole (QF or QD) is chosen to be: 

(KL) = t sin (~) (1) 
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where !.l = 2nQ is the phase advance across the cell. The sextupole strengths could be chosen 

either arbitrarily or such as to correct the natural chromaticities ~x, ~y to vanishing values. In the 

latter case, the sextupole strengths should be chosen as: 

(K'L) = (KL) 
F 11F 

(K'L) = (KL) 
o 110 

where 11F.O = L 2n( ) [2 ± sin (~)l and n = 1/p . 
8 sin2 ~ 

As an example of the parameter values, one can consider the identical LEP cell lattice: 

L=79m; !.l = n/3; p = 3100 m. 

(2) 

(3) 

For comparison with numerical tracking, one could use initial or starting condition x (0) = y 
(0) = 0 and x(o) = xo, yeo) = yo. One could then ask what is the maximum value of the (xo.Yo) 

pair, (x~1aX, y~ax), for which the motion is stable and bounded? 

It was also suggested during the workshop that one could use anyone of the high

brightness, low-emittance lattices envisaged for the many third generation synchrotron radiation 

sources around the world (Berkeley, Trieste, Taiwan, etc.) as test cases. These lattices are 

sufficiently nonlinear at modest amplitudes to put the analyses to a real test of their computational 

power and practicality. 

IV. ANOTHER ANALYTIC APPROACH - HAMILTONIAN-FREE ANALYSIS ON EXACT 

MAPS 

We have noted that analytic developments using the Hamiltonian approach become 

increasingly cumbersome as we go to higher orders in perturbation theory at large amplitudes of 

motion. It is indeed an ambitious goal to be able to derive explicit analytic expressions for the 

Dynamic Aperture (i.e. border of stability) for any arbitrary nonlinear two (and three) dimensional 

Hamiltonian system, such as is represented by a real storage ring. We shy away from such a goal 

of trying to reach the border of stability in one leap. Instead we ask a more practical and modest 

question: Do we have analytic tools to understand the phase space topolgy and compute with 
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enough accuracy dynamical distortions (e.g. distortion of invariant tori of action, nonlinear 

resonance widths, amplitude-dependent tune-shifts etc.) at large amplitudes close to the Dynamic 

Aperture for a real three-dimensional storage ring lattice? The answer is yes and this tool is based 

on extracting exact "maps" for the accelerator lattice (rather than a Hanliltonian) and doing analysis 

(perturbative or otherwise) on these maps. 

Hamiltonian formalism and exact equations of motion derived from them, are natural and 

useful tools for simple situations like a few objects moving in a rather "smooth" potential well. 

The Hamiltonian corresponding to a storage ring is a rather complicated beast, involving periodic 

delta-function-like objects corresponding to localized electromagnetic elements and time

dependence as well. A storage ring is intrinsically "modular", affecting a large number of "almost 

discrete" transformations on a particle's phase. space coordinates. A description of beam dynamics 

with "maps" seems more natural. A map M transforms a point Zi of phase space at azimuth Si on 

the reference orbit into a point Zf at azimuth Sf: 

(4) 

A full tum map M(s) at azimuth s for a storage ring of circumference C corresponds to Si = S, Sf = 
S + C; a multi-tum (n-tum) map Mn(s) to Sf = S + nCo Insofar as one does not care to look at the 

phase-space topology at any other azimuth between Si and Sf, the same "map" can be derived from 

a large number of Hamiltonians belonging to a certain "class", up to a certain order of 

nonlinearities of the map. 

Maps have been used as standard tools to describe linear storage ring lattices for a long time. 

In the particular case of linear motion, maps are amenable to representations in terms of matrices. 

Indeed, transport matrices through linear elements involving Twiss parameters are all too familiar 

in the standard theory of betatron motion in circular accelerators, one of the greatest triumphs of 

Courant-Snyder formalism. These matrices (i.e. maps) summarize the results of integrating the 

equations of motion and provide stability analysis directly. In the same spirit one could foresee 

great virtue in generalizing this formalism to the nonlinear case, using nonlinear maps. For this 

purpose, one needs to construct these maps in a sufficiently simple, reliable and accurate way. We 

will discuss the construction of maps later in the section. Once an accurate map is obtained, one 

could either use it to perform numerical tracking by iteration (thus saving computation time, since 

most of the work has already been done in extracting the map thus effectively eliminating 

redundant integrations) or could simply use a full-turn map to do analysis, perturbative or 

otherwise, on it to extract nonlinearly distorted dynamical quantities such as distortions of invariant 
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tori (i.e. action or emittance), nonlinear tune-shifts, resonance analysis, etc. We turn to this latter 

issue of Hamiltonian-free analysis on exact maps for the moment . 

A full-turn map allows the study of phase-space topology (e.g. invariant surfaces, etc. ) 

without explicit reference to the underlying Hamiltonian. This is achieved either through the 

Normal Form Analysis [7,8,9] based on perturbation theory or through the solution of a functional 

equation for the invariant surface by an appropriate iterative method [5,10]. 

The Normal Form analysis is based on perturbation theory on exact maps and phase 

advances. It is the nonlinear map analogue of the linear Courant-Snyder solution: 

[ ~ (S)] = U(s)R['!'(s)] U-l(O)[ x (0)] 
x(s) ... x (0) 

(5) 

.,t~(s) 0 

where U(s) = ')(s) = ~(s}!2.Ji3(s) , (6) 
')( s) 

~(o) = ~(C) =} U(o) = U(C); 'I'(C) = 2rrv (7) 

and R is the rotation matrix corresponding to phase advance 'I'(s), v being the total tune and ~(s) 

the lattice beta-function. 

Using the complex notation Z = x + ip for phase space coordinates under the transformation 

z' = M(z,z*), the Normal Form analysis uses symplectic transformations close to identity: 

(8) 
n~ l 

where <Dn 's are homogeneous polynomials of degree n in ~,~* to bring the map M to the Normal 

Form: 

(9) 

analogous to Eq. (5) for the linear case, where Q is also of degree ~ n+ 1 and is determined 

recursively, together with <D . Simply stated, this analysis transforms the phase-space to 
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coordinates where the map is a pure rotation, with non constant amplitude-dependent angle 

however (Q depends on 1 ~12 = ~~*): 

It can be best visualized pictorially as in Fig. 2. 

, , 
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Fig. 2 

After t-iterations, the map simply reads: 

, , , , 
~ I 

I 

<D 
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(10) 

, , , , 
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, 

, 
• , , , , , , , , 

----

{ ~ } 

(11) 

The analysis extends up to an arbitrary order in <D . If M is only an order N symplectic 

truncation, the nonna! fonn does not change up to the same order. 

From Nonnal Fonns, one can compute a whole host of dynamical quantities related to 

nonlinear phase-space distortions in a straightforward way. For example perturbative "tune-shifts" 

and distortion of invariant action or "SMEAR" can be simply computed as: 

Tune Shift: 

SMEAR: 

1 
ov =-Q(p)-vo 

2rr 

cr 

(12) 

(13) 
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where 

and 

1 2n 
<R, = - f R(9)d9 

2n 0 

R( 9) = I zl = 1 ¢(1;.1; *)1 = 1 ¢(pei8. pe-io)1 

p = 11;1 = I <l>-\z.z*ll = I zl + ---

One can also compute Gn• the sum of the strengths of all n-th order resonances_ 

write the full-turn map. explicitly delineating the linear map ML. as: 

where 

M = Mui,eg• ___ ego __ _ 

j+k = n 

IA+lml '; n 

One can then construct resonance strengths at a certain amplitude Ao = €~!2 as follows: 

Gn = I 
j+k = n 

IA +Iml'; n 

(14) 

(15) 

(16) 

One can 

(17) 

(18) 

(19) 

where €o is a typical emittance of the particle_ The Gn's are a full figure of merit of nonlinearity. 

containing tune-shifts. resonances and nonlinear distortion_ They are also a measure of the 

resonance widths and are "invariant" under the linear map_ What is more. one can mathematically 
* subtract the nonlinear detuning or amplitude-dependent tune-shift. thus obtaining a quantity Gn• 

which is a measure of "pure distortion" of invariant tori contributed by all n-th order resonances: 

* Gn = [Gn - Tune shifts] "Nonlinear Distortion" (20) 

* While Gn is affected by the full nonlinear map. Gn is affected by the "Coherent Nonlinear Map"_ 

* This is depicted in Fig_ 3 below_ Quantities (Gn) and (Gn ) allow us to disentangle linear vs_ 

nonlinear and nonlinear detuning vs_ nonlinear distortion effects in a machine in a most effective 

way_ 
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Fig. 3 

The alternative nonperturbativemethod [5,10] of solving the functional equation for the 

invariant surface exploits the power of Newton's method to study invariant surfaces very close to 

unstable regions of phase space. From such a calculation again, one obtains nonlinear tune-shifts 

and Fourier analysis of the invariant surface to reveal the spectrum of contributing resonances. 

Both these Hamiltonian free analysis tools on exact maps are powerful and complement each 

other. While it may be sufficient to use the Normal Form Analysis in many cases yielding quick 

and accurate quantitative phase-space analysis at large amplitudes, solving the functional equation 

for invariant surfaces may have a wider range of utility however, since it does not depend on 

perturbation theory. 

Modular maps on a storage ring provide the advantage that any point in the ring is just as 

good for analytic manipulations on maps: any other point in the ring can be obtained by simple 

phase-advances, etc. One could also combine full-turn maps with maps describing localized 

effects such as the beam-beam interaction, r.f. kicks, undulators, etc., thus allowing studies of the 

effect of variations of the local effect in an otherwise unchanged full-turn lattice. One can even 

envision combining noise or dissipation (as in electron storage rings) with the symplectic maps 

considered here. Maps are also smooth functions of tunes, nonFnear magnet strengths, particle 
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energy etc., in general. One can thus store maps for a few values of these parameters and use 

some kind of interpolation to reach other parameter values, thus allowing an efficient way to 

explore tune space, etc. All these favorable attributes, combined with the ability to track particles 

and existence of the above two powerful analysis tools to find invariant surfaces and compute 

accurately nonlinear phase-space distortions in greatly reduced computation time even at large 

amplitudes approaching the border of stability, point to great promise in the use of analysis based 

on exact maps and should allow us to take a significantly long leap forward in quantitatively 

thorough beam stability studies .... provided we have tools to extract maps to any desired accuracy 

efficiently. We turn to this point next. 

Inspite of the recognition of the usefulness of nonlinear maps, their full power has not been 

fully exploited until recently, due to the difficulties associated with extraction of accurate maps. 

Representing the map M(z; Sf, Sj) as a truncated Taylor series in the components of z: 

2 3 N 
M: Zf = Zj + LZi + TZi + ... + WZi (21) 

one needs accurate computation of the Taylor coefficients, which involve increasingly higher order 

derivatives W = [dN-lzr/dZ~-I]o on any reference closed orbit. Such computations become 

increasingly inaccurate with N, involving high order ratios of vanishing numbers. This has tended 

to limit accuracy, since even with the help of Lie algebraic methods and symbolic manipulation, it 

was not practical to compute these coefficients beyond the first few orders. A significant recent 

development has resulted in a superbly improved technique [9] for calculation of derivatives, exact 

up to the computing machine precision, using Differential Algebra. This innovation, by M. Berz, 

finally can provide maps of the desired accuracy and can work to arbitrary order, limited only by 

computer storage and time. 

In some extremely nonlinear cases with large amplitudes, one may hit a practical limitation 

even with differential algebraic techniques - it may simply be not feasible to compute a sufficient 

number of Taylor coefficients, the storage and computing time beginning to increase 

catastrophically beyond a certain order. Considerable progress is being made in a complementary 

and alternative approach [10] involving a global approximation of a map with "spline functions" (in 

'action') and orthogonal basis functions (Fourier analysis in 'angle'). The coefficients in this 

representation can be obtained in an elementary way by running a tracking code for one tum 

starting from a set of initial values on a suitable mesh in action-angle space and then by proper 

fitting with the above functions. No derivatives of the map M are required. If the tracking code is 

symplectic, the resulting map will typically be symplectic to good accuracy. A small modification 
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makes the map symplectic to any required precision. This method of Warnock et al. [10] although 

at a development stage, also seems quite promising with respect to accuracy, simplicity and 

computation time. 

V. REMAINDER ESTIMATION, LONG-TERM WEAK DIFFUSION RATES AND ALL 

THAT 

At every stage of Normal Form Analysis as a function of amplitude, the Birkhoff asymptotic 

perturbation series fails to converge beyond a certain number of symplectic normal form 

transformations. There is a "remainder" that is left over at the penultimate convergence stage, 

which is a measure of the remaining fluctuation in the Hamiltonian or action (Lllll) and is a 

measure of the weak diffusion rate at that amplitude resulting from the infinitely many thin 

stochastic layers in the phase space enclosed by that amplitude. Typically, inverse of these residual 

fluctuations is a broad measure of the lifetime 'tlife of the particle resulting from these diffusion 

mechanisms. The situation is illustrated pictorially in Fig. 4. 

(1,<1» _ =r "SMEAR" 

1 
(Canonical transformation) 

T 

(J,'V) -LlJ: n 
6. J -8 

Fig. 4 
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= 

J 
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divergence of asymptotic series] 
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If the remainder could be estimated accurately, we could estimate the weak diffusion rate 

accurately as well. Rigorous results in multidimensions exist only for autonomous (time

independent) Hamiltonian maps. No such rigorous result exists for nonantonomous (time

dependent) Hamiltonian maps, as for storage rings. However in the one-dimensional case in a 

phase plane, similar estimates hold. There are still arbitrary constants in these estimates and the 

results have to be used with extreme care. However, these estimates may still be useful for relative 

"scaling" of rates with amplitudes (emittances), etc. The mathematics is intricately related to 

Nekhoroshev's theorem and is exposed in the contribution of Bazzani and Turchetti [8] in these 

proceedings. 

VI. CONCLUSIONS 

We find that a global analytic expression and simple "scaling laws" for the Dynamic Aperture 

of an arbitrary nonlinear storage ring are hard, if not impossible, to find. Under some fortunate 

and very special circumstances for particular lattices, certain analytic methods using low order 

perturbation theory in the Hamiltonian formalism as outlined in Section II can, at best, point to a 

limiting amplitude of motion, around and beyond which the motion and the phase space structure 

itself get pathologically complicated. These limiting amplitudes, when analytically expressed (and 

if believed to be relevant and applicable), are cumberso'me enough to be of little practical use. 

Often, they have to be numerically evaluated and simple "scaling" with parameters is not obvious, 

except under special circumstances. For simple situations with modest nonlinearity however, they 

have practical value.in the sense that they provide a fIrst guess at the pathological region of phase 

space. 

Considerable progress has been made however, thanks to some powerful newly-developed 

computational tools as outlined in Section III of this report, in the ability to perform nonlinear 

computational analysis, perturbative or otherwise, at impressively large three dimensional 

amplitudes on any nonlinear lattice for which a tracking code exists without compromising unduly 

on accuracy, faithfulness and economy of time. These analytical methods allow one to penetrate 

deep into the nonlinear phase space, with accurate knowledge of the nonlinear optical distortions 

(distortion of invariant surfaces, nonlinear resonance spectrum, their strengths and widths, 

amplitude-dependent tune-shifts, etc.) at every stage, ultimately reaching amplitudes so close to the 

real border of stability or Dynamic Aperture that they can be accepted as the limiting amplitude for 

all practical purposes. Significant milestones in this development have been techniques to extract 

exact full-tum maps and technique to analyze these maps. In the former category, the algorithm to 

extract exact maps by computing derivatives with Differential Algebra is a significant innovation by 
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M. Berz and is surely to be recognized as an unusually powerful tool. It will certainly find even 

more widespread application in the future. The other method of map extraction from an arbitrary 

tracking code using 'spline' and 'Fourier' fitting, as proposed by Warnock et a!. recently, also 

holds significant promise and complements Berz's method in extremely nonlinear situations where 

storage and computation time become catastrophic. In the latter category of 'analysis of maps', E. 

Forest and others have resurrected the Normal Form analysis, known since Birkhoff,to a level 

where it provides computational capability orders of magnitude superior to any other methods that 

were used before. In parallel, the nonperturbative solution of the functional equation for the 

generating function, proposed by Warnock et al., provides another attractive and promising 

alternative, to be explored further in the future. These developments have been a significant step 

towards the thoroughness of beam stability analysis and computational analytic estimates of the 

border of stability, without involving the practically difficult long-term tracking. 

The question of ultimate long-term stability (after 1010 turns, say) was vigorously discussed 

during the workshop. Both the numerically tracked short-term Dynamic Aperture and the above 

analyses have little to do with long-term stability. There exist no strict mathematical theorems 

applicable to a three dimensional storage ring. Estimation of the 'remainder' and weak diffusion 

rates, in the spirit of Nekhoroshev's theorem as discussed in Section IV, holds a very weak 

promise in this direction. This issue and possible alternatives to long-term tracking are discussed 

in companion papers [1] and [11] in these proceedings. A strategy for a thorough beam stability 

and aperture analysis for a storage ring from design considerations, taking into account the 

methods and recent developments outlined in this report, is discussed in reference [I]. 
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